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Math 564: Adv. Analysis 1 Homework 2 Due: Sep 29 (Fri), 11:59pm

1. Let µ be a finite premeasure on an algebra A on a set X. Recall from Carathéodory’s
theorem that µ∗ is an extension of µ to a measure on ⟨A⟩σ . Thus, (X,⟨A⟩σ ,µ∗) is a
measure space and below we use the terms µ∗-null and µ∗-measurable with respect
to this measure space. To be extra clear: a set Z ⊆ X is µ∗-null if it is contained in a
set Ẑ ∈ ⟨A⟩σ with µ∗(Ẑ) = 0. And a set M ⊆ X is µ∗-measurable if M = B∪Z for some
B ∈ ⟨A⟩σ and µ∗-null Z.

(a) Show that for any set Z ⊆ X, if µ∗(Z) = 0 then Z is µ∗-null. (This is not a tautology.)

(b) Similarly, prove that the σ -algebra B ..= Ad
obtained in Tao’s proof of Carathéodory’s

theorem is exactly the collection of all µ∗-measurable sets.

Remark: One can also prove this using Borel–Cantelli.

(c) Conclude that µ∗-measurable sets are approximable by sets in A, i.e. for each
µ∗-measurable set B and ε > 0, there is a set A ∈A such that µ∗(B △ A) < ε.

(d) Also deduce that µ∗-measurable sets of are approximable from above by countable
unions of sets in A, i.e. for each µ∗-measurable set B and ε > 0, there is a countable
union U of sets in A such that U ⊇ B and µ∗(U ) ≈ε µ∗(B).

Remark: All these statements still hold for σ -finite premeasures, by the standard
argument.

2. Prove that Rd does not admit a translation-invariant Borel probability measure. In
fact, show that for any nonzero vector t⃗ ∈Rd , there does not exist a Borel probability
measure that is invariant under translation by t⃗.

Hint: Find a Borel transversal for the coset equivalence relation of the subgroup
Zt⃗ ⩽R

d .

3. Let E0 be the equivalence relation on 2N of eventual equality, i.e.

xE0y ..⇔∀∞n x(n) = y(n),

where ∀∞n means for all large enough n. For each n, let σn : 2N→ 2N be the nth bit flip
map, i.e. σn(x) is the same as x except that its nth coordinate is equal to 1− x(n). Let Γ
be the group generated by all the σn. (Actually, Γ is isomorphic to ⊕n∈NZ/2Z.) Then Γ

naturally acts on 2N.

(a) Realize that the orbit equivalence relation of this action is exactly E0.

(b) Note that the Bernoulli(1/2) measure is invariant under this action, i.e. for any
µ1/2-measurable set A ⊆ 2N and γ ∈ Γ , we have µ1/2(γA) = µ1/2(A).

(c) Prove that every transversal for E0 is not µ1/2-measurable.
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(d) [Optional] Prove that for every p ∈ (0,1), every transversal for E0 is not µp-
measurable.

4. Let (X,B,µ) be a measure space and recall that for a sequence (An) of measurable sets,

limsup
n

An
..= {x ∈ X : ∃∞n x ∈ An} .

(a) Prove the following more general (and somehow less useful) version of the Borel–
Cantelli lemma: If µ(X) <∞, then µ(limsupnAn) = limN µ(

⋃
n⩾N An).

(b) From this version of the Borel–Cantelli lemma, deduce the versions (a) and (b)
discussed in class.

5. Prove the inexistence of an uncountable almost disjoint family of non-null measurable
sets for σ -finite measures.
Remark: The song that came to my mind while proving this for a finite measure was
“A day in my life” by The Beatles, with the lines

And though the holes were rather small
They had to count them all

In retrospect, this summarizes most of combinatorics.

6. Fill in the gaps in the proof-sketch of Sierpinski’s theorem. More precisely, let (X,B,µ)
be an atomless measure space and prove:

(a) Any measurable set Y ⊆ X admits measurable non-null subsets of arbitrarily small
measure.

Hint: Each measurable set A ⊆ Y of finite measure splits into two sets of positive
measure, so one of them has measure ⩽ 1

2µ(A).

(b) [Optional] Let r ∈ (0,µ(X)) and put r ′ ..= sup
{
µ(B) : B ∈ Br

}
, where Br is the collec-

tion of all measurable sets of measure at most r. Prove that this supremum is
achieved, i.e. there is a measurable set B with µ(B) = r ′. (Below the problems, I
sketched two proofs.)

7. 1 We say that a real r ∈ R admits a sequence of good rational approximations of
exponent α > 0 if there are infinitely many pairs (p,q) ∈Z×N+ such that

|r −
p

q
| < 1

qα
.

Dirichlet’s approximation theorem (or rather its immediate consequence) states that
every real admits a sequence of good rational approximations of exponent 2.

Prove however that for any ε > 0, almost no real admits a sequence of good rational
approximations of exponent 2 + ε, i.e., the set B of all r ∈ R that admit a sequence
of good rational approximations of exponent 2 + ε is null (with respect to Lebesgue
measure).

1Thanks to Robin Tucker-Drob for suggesting this question.
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Hint: First, show that it is enough to prove the statement for [0,1) instead of R. Next,
express B in terms of the sets

Ap,q
..=

{
r ∈R : |r −

p

q
| < 1

q2+ε

}
where q ∈N+ and p < q (the latter inequality can be enforced because |r | < 1). Finally,
what is the measure of Ap,q?

8. Prove that in the 99% lemmas for Lebesgue and Bernoulli(p) measures, there are
actually arbitrarily small boxes/cylinders whose ⩾ 99% is the given measurable set.
Here by arbitrarily small, we mean for a box that each of its dimensions are arbitrarily
small, and for a cylinder that its base is arbitrarily long.

9. Follow the steps below to prove the Steinhaus theorem: For every Lebesgue measurable
non-null set A ⊆ R

d , the difference set A −A ..= {a0 − a1 : a0, a1 ∈ A} contains an open
neighbourhood of 0⃗.

Tip: For simplicity of thought and pictures, only think of d = 1.

(i) Check that for all sets U,V ⊆R
d , we have U ⊆ V −V if and only if (V +u)∩V , ∅

for each u ∈U .

(ii) Let B be a nonempty bounded open box whose at least (1−1/2d+2)100% is A. Let b0

be the midpoint of B and put U ..= B− b0, so U is an open box centered at 0⃗. Show
that for each u ∈U , the intersection Bu

..= B+u ∩B is a box whose each dimension
is at least half of that of B, so Bu occupies at least (1/2d)100% of B and of B+u.

(iii) Conclude that at least 75% of Bu is A while at least 75% of Bu is A+u, so A+u∩A , ∅
for each u ∈U , hence U ⊆ A−A.

Remark: The exact same theorem holds for the Bernoulli(1/2) measure on 2N identified
with the group (Z/2Z)N. As usual, the proof is easier than for the Lebesgue measure.

10.Use the 99% lemma to prove that the equivalence relation E0 on 2N is µ1/2-ergodic.

Remark: E0 is actually µp-ergodic for all p ∈ (0,1). Try proving it, thinking about how
to overcome the fact that the action of the group ⊕n∈NZ/2Z that induces E0 does not
preserve the Bernoulli(p) measure for p , 1/2.

Proposition (Question 6(b)). Let (X,B,µ) be an atomless measure space and let r ∈ (0,µ(X)).
Put r ′ ..= sup

{
µ(B) : B ∈ Br

}
, where Br is the collection of all measurable sets of measure at most

r. Prove that this supremum is achieved, i.e. there is a measurable set B with µ(B) = r ′.

Proof 1 (transfinite measure exhaustion). Suppose towards a contradiction that there is no
such set B. By Question 6(a), we can inductively build a sequence (Bα)α<ω1

of pairwise
disjoint measurable sets such that for each α < ω1, the set

⊔
β<αBβ has measure < r ′. This

yields a contradiction by the same pigeonhole proof of measure exhaustion as given in
class, where the hypothesis of finiteness of the measure is replaced with the condition that
all countable unions have measure < r ′. □
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Proof 2 (1
2-trick and N-length measure exhaustion). We inductively construct a sequence

(Bn)n∈N of pairwise disjoint measurable sets of positive measure such that for each N ∈N,
the set

⊔
n<N Bn has measure < r ′ as follows. Suppose (Bi)i<n is defined and let Bn be the

collection of all measurable sets A of positive measure disjoint from
⊔

i<nBi such that
µ(
⊔

i<nBi)+µ(A) < r ′. By Question 6(a), Bn , ∅. Take as Bn any set in Bn of measure at least
1
2 sup

{
µ(A) : A ∈ Bn

}
.

Then the set B ..=
⊔

n∈NBn has measure ⩽ r ′ and we claim that actually µ(B) = r ′. Suppose
otherwise, so µ(B) < r ′, and hence there is a measurable set A of positive measure such that
µ(B) +µ(A) < r ′. But then this A belongs to every Bn, by definition, so µ(Bn) ⩾ 1

2µ(A) > 0 for
every n ∈N, contradicting

∑
n∈Nµ(Bn) = µ(B) < r ′ <∞.

□
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